New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

Scientists Find Color Vision System Independent of Motion Detection

March 20, 2008
N-348, 2007-08

The vision system used to process color is separate from that used to detect motion, according to a new study by researchers at New York University’s Center for Developmental Genetics and in the Department of Genetics and Neurobiology at Germany’s University of Würzburg. The findings, which appear in the latest issue of the Proceedings of the National Academy of Sciences, run counter to previous scholarship that suggested motion detection and color contrast may work in tandem.

The study’s authors are: Claude Desplan of NYU’s Center for Developmental Genetics; Reinhard Wolf and Martin Heisenberg of the University of Würzburg; and Satoko Yamaguchi, who holds appointments at both institutions.

Whether motion vision uses color contrast is a controversial issue that has been investigated in several species—from insects to humans. In human vision, it had been widely believed that color and motion were processed by parallel pathways. More recently, however, the complete segregation of motion detection and color vision came into question.

To explore this matter, the NYU and University of Würzburg researchers examined the fruit fly Drosophila. Fruit flies’ development is well-understood by biologists and therefore serves as an appropriate focus for analyses. Specifically, they monitored Drosophila’s optomotor response to moving color stimuli in both normal and mutant flies, with some of the mutant flies lacking the photoreceptors necessary for motion detection and others without the photoreceptors needed to process color.

The results showed that flies lacking the photoreceptors for detecting color showed the same ability to detect motion as normal flies. The researchers then concluded that the color channel does not contribute to motion detection.

“The finding that motion detection is independent of color contrast is somewhat counterintuitive,” said NYU’s Desplan. “Color is thought to increase the salience of objects, such as red fruits in the green foliage of trees.”

“However, our results in the fly demonstrate that color is strictly excluded from processing directional motion information, which suggests two separate functional pathways,” he added. “Whether, inversely, the motion detection system is involved in color vision in Drosophila remains to be determined.”

This work was funded by the National Institutes of Health’s National Eye Institute and the University of Würzburg.

This Press Release is in the following Topics:
Graduate School of Arts and Science, Research

Type: Press Release


Search News



NYU In the News

Paying It Backward: NYU Alum Funds Scholarships

The Wall Street Journal profiled Trustee Evan Chesler on why he decided to chair the Momentum fund-raising campaign.

A Nobel Prize Party: Cheese, Bubbles, and a Boson

The New Yorker talked to Professor Kyle Cranmer and graduate student Sven Kreiss about NYU’s role in the discovery of the Higgs boson, which resulted in a Nobel prize for the scientists who predicted its existence.

The World as They Knew It

The New York Times reviewed the exhibit at the Institute for the Study of the Ancient World on how ancient Greeks and Romans mapped the known and unknown areas of their world.

Elite Institutions: Far More Diverse Than They Were 20 Years Ago

NYU made stronger gains over the last 20 years in increasing diversity than any other major research university, according to the Chronicle of Higher Education.

Program Seeks to Nurture ‘Data Science Culture’
at Universities

The New York Times reported on the multi-million collaboration among NYU and two other universities to harness the potential of Big Data, including an interview with Professor Yann LeCun, director of NYU’s Center for Data Science.

NYU Footer