New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

Scientists Find Color Vision System Independent of Motion Detection

March 20, 2008
N-348, 2007-08

The vision system used to process color is separate from that used to detect motion, according to a new study by researchers at New York University’s Center for Developmental Genetics and in the Department of Genetics and Neurobiology at Germany’s University of Würzburg. The findings, which appear in the latest issue of the Proceedings of the National Academy of Sciences, run counter to previous scholarship that suggested motion detection and color contrast may work in tandem.

The study’s authors are: Claude Desplan of NYU’s Center for Developmental Genetics; Reinhard Wolf and Martin Heisenberg of the University of Würzburg; and Satoko Yamaguchi, who holds appointments at both institutions.

Whether motion vision uses color contrast is a controversial issue that has been investigated in several species—from insects to humans. In human vision, it had been widely believed that color and motion were processed by parallel pathways. More recently, however, the complete segregation of motion detection and color vision came into question.

To explore this matter, the NYU and University of Würzburg researchers examined the fruit fly Drosophila. Fruit flies’ development is well-understood by biologists and therefore serves as an appropriate focus for analyses. Specifically, they monitored Drosophila’s optomotor response to moving color stimuli in both normal and mutant flies, with some of the mutant flies lacking the photoreceptors necessary for motion detection and others without the photoreceptors needed to process color.

The results showed that flies lacking the photoreceptors for detecting color showed the same ability to detect motion as normal flies. The researchers then concluded that the color channel does not contribute to motion detection.

“The finding that motion detection is independent of color contrast is somewhat counterintuitive,” said NYU’s Desplan. “Color is thought to increase the salience of objects, such as red fruits in the green foliage of trees.”

“However, our results in the fly demonstrate that color is strictly excluded from processing directional motion information, which suggests two separate functional pathways,” he added. “Whether, inversely, the motion detection system is involved in color vision in Drosophila remains to be determined.”

This work was funded by the National Institutes of Health’s National Eye Institute and the University of Würzburg.

This Press Release is in the following Topics:
Graduate School of Arts and Science, Research

Type: Press Release


Search News



NYU In the News

NYU Offers Financial Aid to Undocumented Students

The Wall Street Journal reported that NYU will begin offering scholarship aid to undocumented students for the school year beginning next September.

NYU Adopts Lean LaunchPad Program to Teach Entrepreneurship

Startup guru Steve Blank, in a Huffington Post blog, described how NYU adopted the Lean LaunchPad model to teach entrepreneurship to students and faculty at NYU.

Biology Professor Jane Carlton Examines Wastewater for the City’s Microbiome

The New York Times’ Science Times column “Well” profiled Biology Professor Jane Carlton and her research project to sequence microbiome of New York City by examining wastewater samples.

Steinhardt Professors Use a Play as Therapy

The New York Times wrote about a play written by Steinhardt Music Professor Robert Landy about the relationship between Adjunct Professor Cecilia Dintino, a clinical psychologist in the Drama Therapy Program, and a patient, former Broadway actress Jill Powell.

NYU Public Health Experts Urge Strengthening Local Health Systems to Combat Ebola

Dean Cheryl Healton of the Global Institute of Public Health and Public Health Professor Christopher Dickey wrote an op-ed in the Huffington Post saying international health agencies need to strengthen their presence in countries at the local level to prevent future ebola outbreaks.

NYU Footer